Range sum query - immutable¶
Time: ctor:O(N),lookup:O(1); Space: O(N); easy
Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive.
Example 1:
Input/Output: nums = [-2, 0, 3, -5, 2, -1]
sumRange(0, 2) -> 1
sumRange(2, 5) -> -1
sumRange(0, 5) -> -3
Explanation:
sumRange(0, 2) -> (-2) + 0 + 3 = 1
sumRange(2, 5) -> 3 + (-5) + 2 + (-1) = -1
sumRange(0, 5) -> (-2) + 0 + 3 + (-5) + 2 + (-1) = -3
Example 2:
Input/Output: nums = [-4, -5]
sumRange(0, 0) -> -4
sumRange(1, 1) -> -5
sumRange(0, 1) -> -9
sumRange(1, 1) -> -5
sumRange(0, 0) -> -4
Explanation:
sumRange(0, 0) -> -4
sumRange(1, 1) -> -5
sumRange(0, 1) -> (-4) + (-5) = -9
sumRange(1, 1) -> -5
sumRange(0, 0) -> -4
Notes:
You may assume that the array does not change.
There are many calls to sumRange function.
[1]:
class NumArray(object):
"""
Time: ctor:O(N), lookup:O(1)
Space: O(N)
"""
def __init__(self, nums):
"""
:type nums: List[int]
"""
self.accu = [0]
for num in nums:
self.accu.append(self.accu[-1] + num),
def sumRange(self, i, j):
"""
sum of elements nums[i..j], inclusive.
:type i: int
:type j: int
:rtype: int
"""
return self.accu[j + 1] - self.accu[i]
[2]:
nums = [-2, 0, 3, -5, 2, -1]
n = NumArray(nums)
assert n.sumRange(0, 2) == 1
assert n.sumRange(2, 5) == -1
assert n.sumRange(0, 5) == -3
nums = [-4, -5]
n = NumArray(nums)
assert n.sumRange(0, 0) == -4
assert n.sumRange(1, 1) == -5
assert n.sumRange(0, 1) == -9
assert n.sumRange(1, 1) == -5
assert n.sumRange(0, 0) == -4